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The paper presents a theoretical study on the excitation of surface plasmon polaritons �SPPs� and their decay
by reradiation to light. We consider a free-standing metallic transmission grating being illuminated with a
TM-polarized light pulse of 10 fs duration at normal incidence. The SPP decay time is assumed to be much
larger than the pulse duration. In particular, we analyze the SPP decay after the exciting pulse disappeared. We
find periodic amplitude modulation of the declining light field both in close proximity to the grating, where
evanescent waves are dominant and in the far-field region, where the light field consists mainly of propagating
waves. Using the example of the magnetic field, we demonstrate that the amplitude modulation of the near field
exhibits increasing strength with time due to a drop of the evanescent wave density associated with the SPP
decay. The far field above and below the grating shows frequency beating with periods corresponding to the
reciprocal width of a frequency gap in the transmission spectrum. Strong coupling between SPP modes on the
top and bottom interfaces leads to fixed phase relations between the beat notes of the transmitted and reflected
light fields. This coupling is confirmed by a periodic change in the Poynting flow direction perpendicular to the
interfaces. Finally, we study also the dynamics of the SPP decay by employing Gabor wavelet transforms for
the calculated fields far above and below the grating. In this way, we get access to the spectral contents of the
light field at different times. This novel spectral-temporal analysis shows a narrowing of the initial pulse
spectrum and reveals spectral features not seen in the Fourier spectrum.
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I. INTRODUCTION

The interaction between light and nanostructured metallic
films has drawn attention in the last two or three decades.
Among these structures are the optical grating with one-
dimensional nanoslits and the two-dimensional nanohole ar-
ray. Progress made was equally stimulated by the fundamen-
tal physical knowledge and its application in diverse areas
such as biosensing by use of enhanced Raman scattering,1

near-field fabrication,2 and energy transfer across a metal.3 A
key phenomenon of light/metal interaction is the formation
of surface plasmon polaritons �SPPs� by collective excitation
of the electron density on the surface of a metal by light.4,5

An SPP comprises an oscillating surface-charge density
coupled to an electromagnetic field at the interface of two
media with permittivities of opposite sign, for example, a
metal and a dielectric. In general, the excitation of SPPs is
not possible by simply shining light on a smooth metallic
surface because of a momentum mismatch between a photon
and the SPP of the same frequency. However, an appropriate
periodic structure on the metal surface such as grating slits
allows bridging this mismatch, paving the way for the emer-
gence of SPPs. The incident electric field vector has to os-
cillate perpendicularly to the grating slits for excitation of
SPPs on a grating interface, i.e., TM-polarized light is re-
quired. The electromagnetic field associated with SPPs is of
evanescent character normal to the metal surface, which
means that the field decays exponentially with distance from
the surface whereas it behaves like a propagating wave �sur-
face mode� in the surface plane.6 The energy carried by the
SPPs is dissipated either nonradiatively by Ohmic losses in
the metal or by reradiation into the far field. The latter pro-
cess is in the focus of this paper.

Generally speaking, SPPs are a particular type of Wood’s
anomalies occurring in a grating being illuminated by TM-

polarized light. These anomalies include two distinct types,
namely, a diffraction anomaly and a resonance anomaly. The
diffraction anomaly is associated with the observation that at
any diffractive order the transition from a propagating to an
evanescent wave can be caused by variation of the wave-
length or the angle of incidence.7 The wavelengths at these
transitions are the Rayleigh wavelengths �R.8 The resonance
anomaly is connected with the excitation of eigenmodes at
the grating interface. This case corresponds to the generation
of SPPs.9,10 Both types of anomalies can either occur sepa-
rately or appear together.10

Much attention has been paid to light propagation in pe-
riodically nanostructured metallic films in recent years.
These studies gave evidence for unexpected transmission
properties11–15 and photonic energy band gaps being respon-
sible for prohibited light propagation within definite fre-
quency intervals.16–21 These findings have been explained
with the existence of SPPs. Extraordinarily high light trans-
mission at certain frequencies in measured spectra was first
observed by Ebbessen et al.11 in metallic films perforated
with subwavelength hole arrays. Nanostructured metallic
gratings were studied experimentally in Refs. 22–27, giving
insight into SPP dispersion properties22,25 and oscillatory
light transmission.23 In theoretical papers, different numeri-
cal models are used that relate to light transmission through
perforated metallic films.28–39

Most of the papers devoted experimentally or theoreti-
cally to light propagation in nanostructured metallic films
deal with continuous-wave excitation. Only a few are con-
cerned with short-pulse illumination. Some examples for the-
oretical studies about pulse excitation are presented in Refs.
36–38 and experimental ones in Refs. 23 and 27. In two
previous papers, we have theoretically considered the light
dynamics in metals perforated with periodic arrays of nano-
holes and exciting pulses of 10 fs duration. The first paper36
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relates to a free-standing symmetric system with air above
and below the metallic film whereas the second37 corre-
sponds to an asymmetric layout with air above and dielec-
trics with different refractive indices below the film. In both
cases, the near field behavior has been investigated exclu-
sively while the transition to the far field, the spectral prop-
erties, and the short-time resolution of the spectra have not
been considered. In Ref. 38 pulse shaping at transmission
through a nanostructured one-dimensional grating is investi-
gated using a finite-difference time-domain �FDTD� model.
The authors of Ref. 23 report experimental evidence of pe-
riodic patterns superimposed on the transmitted intensity
from metallic films with nanoslits after illumination with
femtosecond pulses.

The present study deals theoretically with the excitation
of SPPs and, in particular, with their decay by reradiation to
light in a metallic transmission grating being illuminated
with an ultrashort pulse of 10 fs duration at normal inci-
dence. The grating is of symmetric structure surrounded by
air. The carrier frequency of the impinging pulse is tuned to
maximum transmittance of the grating. This situation corre-
sponds to the excitation of SPPs on both air/metal interfaces.
In particular, we analyze the SPP decay after the exciting
pulse disappeared. This is done by means of the calculated
temporal evolution of the grating light field being closely
linked to the SPP decay. The influence of SPPs on the elec-
tromagnetic field varies with distance to the grating. Close to
the grating, the presence of SPPs manifests itself by surface
waves Ex, Ez, and Hy moving on the air/metal interfaces. On
the other hand, far from the grating plane waves Ex and Hy
propagating normally to the grating interface indicate an SPP
decay due to elastic scattering at the grating slits. The life-
time of the SPPs is assumed to be much larger than the input
pulse duration. Thus, after the exciting pulse disappeared, the
electromagnetic field is determined by an SPP decay leading
to reradiation of photons, i.e., the reverse process of the pre-
vious conversion of light to SPPs. This means that pulse
excitation allows studying reradiation processes connected to
waves of zeroth diffraction order without any interference
from external light. However, the short femtosecond pulse
illuminating the grating may also excite first-order diffractive
propagating waves that superimpose the light waves caused
by reradiation of SPPs. Since the different waves belong to
different frequency intervals and move in different directions
one can clearly distinguish them from each other.

II. THEORETICAL MODEL

The propagation of light through a grating, Fig. 1, is
based on Maxwell’s equations in combination with an ap-
proximate description of the dipole moment on a metal sur-
face following Drude theory.40 The numerical evaluation is
made utilizing an FDTD code, e.g., Refs. 41 and 42. The set
of equations used is as follows �SI units�

−
�Hy

�z
= �0

�Ex

�t
+ Jx, �1a�

�Hy

�x
= �0

�Ez

�t
+ Jz, �1b�

�0
�Hy

�t
=

�Ez

�x
−

�Ex

�z
, �1c�

�J�

�t
+ �DJ� = �0�D

2 E� . �1d�

Derivatives with respect to y do not appear due to the chosen
geometry that is invariant in the y direction. Ex and Ez are the
x and z components of the electric field, and Hy is the mag-
netic field component parallel to the grating slits. The re-
maining field components disappear, i.e., Ey =Hx=Hz�0.
The parameters �0 and �0 denote the free-space permittivity
and magnetic permeability, respectively. The above model is
applied to the free-standing grating of Fig. 1, with air above
and below the metal film and in the grating slits. Light
propagation in these metal-free regions is governed by Eqs.
�1a�–�1c� with Jx=Jz�0 whereas description of light propa-
gation in the metal depends on the full set of Eqs. �1a�–�1d�.
The metal polarization P� m is taken into account by Jx and Jz,
i.e., the components of a current density vector J��A /cm2�.
The latter is connected to P� m via the time derivative J�

=�P� m /�t. Equation �1d� determines the dependence of J� on
E� . According to the Drude model J� describes the light-
induced oscillations of quasifree electrons in the conduction
band of the metal. The parameters �D and �D of Eq. �1d� are
related to the relative dielectric function of the metal �gold�
�m=�m,re+ i�m,im which is given by the following approxi-
mate expression:20,43

���� = 1 −
�D

2

�2 + i�D�
. �2�

Here � denotes the angular frequency of light while �D and
�D are chosen to fit empirical data for the real and imaginary
parts of �m over the �narrow� frequency range of interest
around an SPP resonance. The interband contributions43 to
the above dielectric function of gold have been neglected
because they are found to be low in the wavelength interval
around �=0.79 �m being considered in the present paper. It
has been estimated from Ref. 43 that the interband transi-
tions contribute less than 2% of �m,re and about 10% of �m,im.

FIG. 1. Schematic illustration of the free-standing transmission
grating which the stated theoretical model relates to. Grating param-
eters: slit width d=60 nm, thickness of metal film h=120 nm, and
lattice period ag=750 nm. The incident 10 fs pulse is TM polarized
and illuminates the grating at normal incidence from below.
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The incident electric field in air is linearly polarized par-
allel to the x axis and reads as Ex,in�z , t�=Ain cos��0t−k0z�,
where �0 is the free-space carrier frequency and k0=�0 /c
is the respective wave number. Ain is a Gaussian-shaped
function according to Ain=A0 exp�−2ln2��t− t0−z /c� /�0�2�,
with A0 being a real amplitude. �0 is the width �full width at
half maximum �FWHM�� of the incident pulse intensity time
averaged over an optical period, and t0 denotes a reference
time. The corresponding magnetic field is given by
Hy,in�z , t�=Ex,in�z , t� /Z0 with the free-space impedance

Z0=��0 /�0.
Light propagation in the grating is treated numerically by

applying a two-dimensional FDTD code to Eqs. �1a�–�1d�.
The space grid is composed of 2�102 �x direction� by
2�104 �z direction� cells with a space increment of 3.75 nm
�maximum number of cells along z is 3�104� and the time
increment is 5�10−3 fs. Periodic boundary conditions are
applied to the left and right sides of the unit cell in the x
direction whereas second-order Mur conditions terminate the
FDTD lattice in the z direction above and below the grating.

Computational results obtained from a numerical model
need physical interpretation that should be supported, to the
extent possible, by �approximate� analytic relations. For this
purpose we will now focus on �i� an approximation by three
diffraction modes for the light field above the grating and �ii�
a simplified analytic version for the SPP dispersion. Both
these methods will help to elucidate findings from our FDTD
model.

First, we note that in the case of TM polarization the light
field in a one-dimensional grating is fully characterized by its
only nonvanishing magnetic component Hy in the current
model. We restrict ourselves to the x-z plane above the grat-
ing �z�h� where the transmitted field Hy reads as

Hy�t,x,z − h� = 	
−	

+	

d�e−i�tF���

�

q

Tq���exp�i�kx,qx + kz,q�z − h��� �3�

with F��� being the Fourier transform of the envelope of the
incident Gaussian field. The sum over q corresponds to Ray-
leigh’s expansion, with Tq��� being a complex transmission
amplitude. Further, kx,q and kz,q are the components of the
wave vector in the x-z plane given by

kx,q = qGx, �4a�

kz,q = �k2 − kx,q
2 , �4b�

where Gx=2
 /ag is the reciprocal lattice vector in the x
direction and q=0, �1, . . . denotes the diffraction order of
grating modes, and k=� /c is the free-space wave number.
Taking only into account the first three terms of the Rayleigh
series �q=0, �1�, Eq. �3� reduces to the following expres-
sion

Hy�t,x,z − h� � 	
−	

+	

d�e−i�tF����T0 exp�ik�z − h��

+ 2T1 cos�Gxx�exp�i�k2 − Gx
2�z − h���

�5�

assuming, in addition, consistent expansion coefficients
T−1=T+1=T1 for q= �1. Corresponding expansions for the
electric fields Ex�t ,x ,z−h� and Ez�t ,x ,z−h� are obtained by
virtue of Eqs. �1a� and �1b�, respectively, with Jx=Jz=0 in
combination with Eq. �5�.

The expression in square brackets on the right-hand side
of Eq. �5� describes diffractive grating modes belonging to
frequency � and their dependence on the spatial coordinates
z and x. For convenience, we briefly summarize the types of
diffractive modes excited by TM-polarized light at normal
incidence. Referring to the above three-mode approximation
one obtains: �i� propagating modes at q=0 �specular trans-
mission�. The wave vector points in the z direction yielding
kx,0=0 and kz,0=k=� /c. �ii� Propagating modes at q= �1
and �k��Gx. The wave vector is inclined in respect to the z
direction resulting in kx,�1= �Gx and kz,+1=kz,−1=�k2−Gx

2.
�iii� Evanescent modes at q= �1 and �k��Gx. The wave
vector points in the x direction with kx,�1= �Gx and
kz,+1=kz,−1= i�Gx

2−k2.
Generation and decay of SPPs on grating interfaces are

intimately connected to the occurrence of appropriate dif-
fraction modes that provide the necessary momentum match-
ing condition for SPP coupling. This can easily be seen, for
example, from an approximate SPP dispersion relation for a
planar metal/air interface under the assumption that the
width of the slits is much smaller than the light
wavelength.4,44 This dispersion relation is then given by

kSP,x
re =

�

c�1 + 1/�m,re

. �6�

Here kSP,x
re denotes the real part of the SPP momentum di-

rected along x, parallel to the interface, and � is the free-
space optical frequency. Note that the influence of the slits
on the SPP dispersion relation has been ignored in Eq. �6�.

First-order SPPs are excited if the condition kSP,x
re = �Gx is

met,4,45 e.g., by evanescent waves of diffraction order
q= �1. Actually, an SPP mode can be considered a leaky
surface mode, given that the SPP momentum is a complex
number with kSP,x

im 
�m,im. The situation is reminiscent of a
slightly damped mechanical oscillator that is driven by a
force periodically varying with the real eigenfrequency of the
oscillator.9

The frequency �=�SP of a first-order SPP can be esti-
mated from Eq. �6� and is approximately given by
�SP��R�1+1 /2�m,re� making use of the fact that �m,re is a
large negative number for noble metals in the near infrared
part of the spectrum. Since a smooth metal surface is con-
sidered �SP is sometimes referred to as the flat-metal SPP
resonance.

The quantity �R=2
c /ag denotes the first-order Rayleigh
frequency, i.e., the frequency at which the first diffraction
order becomes evanescent according to the grating equation
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for normal incidence. Since �1 /2�m,re��1, the spectral posi-
tion of �SP is shifted slightly toward lower frequencies with
respect to �R. Both, the spectral position of �SP and its dis-
tance to �R are quantitatively confirmed by numerically cal-
culated transmission curves, which are based on the above
model, Eqs. �1a�–�1d�. The reverse process of reradiation
arises from the scattering of SPPs at the slits, which results
in zeroth-order modes of frequency �SP propagating nor-
mally to the interface.19

If one takes into account the grating slits in terms of their
dispersive properties, given a periodic modulation of �m
along x, the simple relation Eq. �6� has to be replaced by a
more complex dispersion function, see, for example, Ref. 30.
In the present case of normal incidence the input pulse may
excite two counterpropagating SPP modes on each of the two
air/metal interfaces, on the upper and lower side of the grat-
ing. The two SPP modes interfere, giving rise to standing
waves. This mode coupling creates a frequency �energy� gap
of inhibited light propagation in the dispersion curve.35

Moreover, coupling between the SPP waves on the top and
bottom surfaces may occur due to energy transfer through
the grating slits. A frequency gap of very low transmittance
with a minimum at �SP is observed in the grating transmis-
sion spectrum �details are given in chapter III.B.�.

In this context, we mention that the role of SPPs in the
light transmission of metallic gratings has been a subject of
debate in recent years.34 It is now widely accepted that the
far-field grating transmission shows a minimum at �SP, in
contrast to the original expectation of a transmission peak.

We close this chapter by specifying the parameter values
used for numerical calculations. The geometrical parameters
of the grating are as follows: thickness h=120 nm, spatial
lattice period ag=750 nm, and slit width d=60 nm. The ex-
citing pulse is a transform limited Gaussian pulse of 10 fs
duration �FWHM of pulse intensity� with a carrier frequency
of �0=0.38 fs−1 ��0=0.79 �m� corresponding to the maxi-
mum transmittance of the grating. The real and imaginary
parts of the permittivity for the metal �gold� in a narrow
range around �0 are taken from46 and read as �m,re�−23.3,
�m,im�1.5. By virtue of Eq. �2� one then obtains �D
�11.7 fs−1 and �D�0.15 fs−1.

III. ELECTRIC FIELDS AND OPTICAL SPECTRA AT
VARIOUS DISTANCES FROM THE GRATING

A. Introductory remark

In the following, numerical results are presented that are
based on the full set of Eqs. �1a�–�1d�. The obtained results
are explained using a three-mode approach for the light fields
and taking into account properties of the SPPs. It is well
known that the field characteristics change strongly with dis-
tance from the grating. Treating the simpler case first, sub-
chapter III.B. is devoted to field behavior at distances from
the grating larger than the carrier wavelength �intermediate
from near-to-far-field region� within a range from 1.9 to
26 �m. Subchapter III.C. refers to the immediate neighbor-
hood of a grating surface �near-field region�.

B. Distance from the grating larger than the wavelength

First we want to see how the numerical model used de-
scribes the influence of SPPs on the light field. As an ex-

ample, the red curves in the bottom parts of Figs. 2�a� and
2�b� show �a� transmitted and �b� reflected electric fields Ex
vs time, which are taken at 3.75 �m above and 3.75 �m
below the grating, respectively. The carrier wavelength of the
field is �0=0.79 �m being close to the peak transmittance.
In both cases, the transverse coordinate is x=ag /2, denoting
the horizontal position between two adjacent grating slits.

The trailing edges of the red curves show damped fre-
quency beats with a period of about 50 fs, which we assume
to be due to the light reradiated by SPPs after the incident
pulse disappeared. For comparison, the black curves in the
top parts of Fig. 2 indicate the transmitted �a� and the re-
flected �b� field of a 10 fs Gaussian pulse, yet with a carrier
wavelength of �0=1.10 �m being significantly outside the
peak transmittance. We mention that the two Drude param-
eters �D and �D employed in the case of �0=1.10 �m differ
only slightly from those for �0=0.79 �m. The two black
curves of Figs. 2�a� and 2�b� show no beating characteristics.
From this we conclude that frequency beating arises under
the condition that the incident light wavelength be suffi-
ciently close to the peak transmittance wavelength.

Moreover, a closer look shows that the antinodes of the
beat note above the grating coincide with the nodes of the
beat note below the grating and vice versa. Figure 2�c� dem-
onstrates this relationship between the trailing edges in more
detail for a prolonged period of time. This behavior of the
fields above and below the grating is indicative of a remark-
able coupling between the SPPs on the top and bottom sur-
face via the grating slits. We want to emphasize that the beat
oscillations of Fig. 2�c� are mainly shaped by propagating
waves �q=0� since evanescent waves are well negligible at
distances of 3.75 �m from the grating. Assuming that the
q=0 waves are generated by scattering of SPPs in the vicin-

FIG. 2. �Color online� Illustration to explain the effect of SPPs
on field dynamics. �a� Transmitted x component of the electric fields
Ex vs time beyond the grating at carrier wavelength �0=0.79 �m,
red curve �bottom�, and �0=1.10 �m, black curve �top�. Both
curves refer to z=h+3.75 �m. �b� The same as �a� but the x com-
ponent of the reflected electric fields Ex below the grating at z=
−3.75 �m. �c� Larger view of the beat notes at the trailing edges of
the red-colored fields shown in the bottom parts of �a� and �b�,
respectively, after the input pulse has already decayed, i.e., later
than about 70 fs.
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ity of the two interfaces, after the input pulse died out, one
may expect beat notes like that of Fig. 2�c� also in the near
field of the grating. However, a pronounced superposition
with evanescent waves �q= �1� will appear in the near field,
see chapter III.C.

In the following, we present calculated optical spectra of
the transmitted and reflected Ex fields beyond and below the
grating, respectively. The spectra of the Ex fields are de-
scribed by their spectral densities �Fx�2 vs frequency
�, which are given by the squared absolute values
of the Fourier transforms of the Ex fields, that is,
�Fx����2= �
−	

+	Ex�t�exp�−i2
�t�dt�2.47 Figure 3 shows spectral
densities, namely, �a� �Fx,tr�norm

2 of the transmitted Ex field
above the grating at z=h+3.75 �m for three different trans-
verse positions x, see below, and �b� �Fx,re�norm

2 of the re-
flected Ex field below the grating at z=−3.75 �m and at the
same transverse locations as in �a�. Moreover, �b� includes
the spectral density �Fin�norm

2 of the incident Gaussian pulse
field. Black �solid�, green �dashed�, and red �dotted� curves
of Figs. 3�a� and 3�b� refer to x=0 �center of a grating slit�,
x=ag /4, and x=ag /2, respectively. All the spectral densities
are related to the peak value of the incident spectral density
�subscript “norm”�. Please, note that the red curves of Figs.
3�a� and 3�b� represent the spectra of the red Ex curves in the
bottom parts of Figs. 2�a� and 2�b�, respectively.

The spectrum �Fx,tr�norm
2 of the transmitted field displayed

in Fig. 3�a� indicates a frequency interval �gap� of very low
transmission, which extends from f2�0.38 fs−1 to about
f5�0.40 fs−1. The frequency f5� fR=c /ag denotes the Ray-
leigh frequency. The gap width ��� f5− f2�0.02 fs−1 cor-
relates with a beat period of nearly 50 fs, as is observed on
the transmitted and reflected fields, see Fig. 2. The center of
the frequency gap is at f4� fSP�0.39 fs−1, which agrees
with the first-order flat-metal SPP resonance, see Eq. �6�.
Corresponding to an energy shift of 41 meV with respect to

f4, Fig. 3�a� shows that the transmittance peak frequency f2
is red shifted by about 20 nm, which agrees quite well with
measurements.25 The line shape around f2 is slightly asym-
metrical, indicating a relatively steep increase at the high-
frequency side and a slow decrease at the low-frequency
side. This behavior agrees qualitatively with transmission
spectra deduced from the Fano-type model.48,49 While the
low-frequency edge of the gap at f2 provides evidence for
the occurrence of SPPs, the high-frequency edge appears due
to Wood’s anomaly.35 The linewidths around f2 and f5 are
much narrower than the gap width. This may explain the
occurrence of significant beat patterns seen in Fig. 2�c�.

For frequencies below f5 of Fig. 3�a�, the three power
spectra agree completely, except for a small interval close to
f5. The differences between the peak heights of the three
curves seen at f5 indicate that evanescent waves �q= �1� of
noticeable amplitude may survive in the immediate vicinity
of f5. However, with a further increase of the distance from
the grating, the differences of the peak heights level out.
Above f5, both zero order and first order propagating waves
are excited, which gives rise to interference effects depen-
dent on the spatial position �z ,x�. �Fx,tr�norm

2 and �Fx,re�norm
2

behave complementarily over the entire frequency interval,
which is evident, for example, from the observation that
minima of �Fx,re�norm

2 coincide with peaks of �Fx,tr�norm
2 at f2

and f5. In contrast, in the interval between these frequencies,
low values of �Fx,tr�norm

2 correlate with high values of
�Fx,re�norm

2 .
Since the transmission of light is about 20% for the peak

at f2=0.38 / fs, see Fig. 3�a�, and the width of the slits is
about 8% of the lattice period, we observe a transmission
enhancement of approximately 2.5 due to the coupling of
light with SPPs. For comparison, the transmission enhance-
ment measured by Ebbesen et al.11 for a hole array was more
than 2. Schröter and Heitmann13 obtained an enhancement
factor of roughly 3 from their theoretical grating model.

Summarizing the important features of Figs. 2 and 3, we
first note that light transmission through the subwavelength
slits of the grating is determined by strong SPP interaction
which manifests itself �i� by a frequency gap in the transmis-
sion spectrum and �ii� by the temporal behavior of the trans-
mitted field which shows regular beat patterns of a consider-
able amplitude after the incident pulse disappeared. On the
other hand, the effect of SPPs on light reflection is essen-
tially limited to a small-amplitude beat note, whose contri-
bution to the Fourier transform spectrum of the reflected
field, therefore, is low. In chapter IV we present detailed
insight into the time-dependent spectral properties.

We proceed with the time dependence of the electric fields
at several distances above the grating. Again, the carrier
wavelength is set to �0=0.79 �m. Figure 4 indicates Ex as a
function of time at �a� z=h+1.875 �m, �b� z=h+3.75 �m,
and �c� z=h+11.25 �m, where we focus on three transverse
positions x=0, x=ag /4, and x=ag /2. Figure 4 also displays
the electric z component Ez, at x=ag /4. We first note that Ex
and Ez of Fig. 4 differ significantly in their temporal charac-
teristics: the Ex fields appear as periodically modulated wave
patterns, whereas the Ez fields exhibit nonperiodic monotonic
envelope profiles over time. Furthermore, we observe that
the onset tz of Ez oscillations is delayed relative to the arrival

FIG. 3. �Color online� Normalized spectral densities of electric
fields vs frequency, above and below the grating, taken at various
transverse locations x. The wavelength scale on top has been added
for convenience. �a� Spectral density of the transmitted Ex field,
3.75 �m above the grating. �b� Spectral density of the reflected Ex

field, 3.75 �m below the grating, and spectral density of the inci-
dent pulse.
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time of the input pulse and is shifted to later times when z
increases.

A more detailed examination of Figs. 4�a� and 4�c� reveals
that the green �x=ag /4� wave patterns of Ex look identical at
all three distances z provided a shift in time due to the retar-
dation effect is ignored. This is indicative of zero-order
waves �q=0� propagating in the z direction. The black
�x=0� and red �x=ag /2� patterns also consist of q=0 waves
which are, however, partially superimposed by first-order
propagating waves �q= �1, �� f5� and evanescent waves
�q= �1, �� f5�. The contribution of the latter to the light
field is low at distances from the grating of about twice the
wavelength and beyond. However, first-order propagating
waves significantly disturb the periodic oscillations of the
q=0 wave patterns. This can be most clearly observed in Fig.
4�c�, at times later than the dotted vertical line at t� tz. For
t� tz black and red curves synchronize almost completely
with the green ones. This result confirms an expected coin-
cidence of the arrival of diffracted propagating waves at dis-
tance z from the grating and the emergence of the Ez field
from zero level at time tz. Disturbances of wave patterns are
also observed in Figs. 4�a� and 4�b�. Because of partial over-
lap with the input field, they are less striking when compared
to Fig. 4�c�.

Figure 4 deals solely with the electric components of the
light field. To complete the picture, Fig. 5 describes the time
evolution of both, electric and magnetic components, taken
at a distance from the grating as large as z=h+26.25 �m.
From top to bottom, the electric fields Ex at x=0, x=ag /4,
and x=ag /2 are shown. Below Ez at x=ag /4 three more
curves belonging to magnetic fields Z0Hy are plotted for the

same transverse positions as the Ex. We observe that all the
curves of fields Ex and Z0Hy completely coincide in the time
interval t� tz, before distortions cause nonregular oscilla-
tions. This suggests that interfering plane waves propagating
in the z direction constitute a wave of slowly modulated
amplitude, which is existing in a time interval earlier than
indicated by the dotted vertical line. In the far field limit, as
z approaches infinity, the time interval t� tz becomes larger
and larger.

One expects that at times earlier than tz the transmitted
energy density flow, is given by the normal component of the
Poynting vector, Sz�ExHy, since energy transport parallel to
the grating surface disappears. Figure 6 shows the far-field

Poynting flow S̄z,norm, where the overbar indicates time aver-

FIG. 4. �Color online� Electric fields Ex and Ez vs time at dif-
ferent distances from the grating: �a� 1.875 �m, �b� 3.75 �m, and
�c� 11.25 �m above the grating. Within each subfigure, the three
topmost curves describe the x component of the electric field Ex at
different transverse positions x, namely, from top to bottom x=0
�black curves�, x=ag /4 �green�, x=ag /2 �red�. The bottom most
curve displays the z component Ez at x=ag /4 �blue�. The time tz

indicates the onset of Ez oscillations.

FIG. 5. �Color online� Electric and magnetic fields vs time about
26 �m above the grating at different transverse locations, as indi-
cated on the right-hand side of the plot. At times earlier than indi-
cated by the dotted vertical line, i.e., for t� tz, fields Ex and Hy

consist of waves from zeroth-order transmission and oscillate syn-
chronously at the three local positions x. At later times, the phases
of the fields no longer agree due to superposition of diffracted �first
order� waves.

FIG. 6. �Color online� Far-field Poynting flow �time-averaged
over an optical cycle� in the z direction vs time. The curve refers to
fields Ex and Hy at x=ag /4 of Fig. 5 and is related to the peak value
of the incident Poynting flow �red dotted line�.
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aging of Sz. The subscript norm means that the Poynting flow
is related to the peak value of the input flow.

We end up this chapter with a short reference to two ex-
perimental papers dealing with SPP dynamics in nanoslit me-
tallic gratings. The first paper27 reports femtosecond pump-
probe measurements of a perforated gold film deposited on a
quartz substrate. After excitation of SPPs with a 100 fs pulse
at the two edges of the SPP band gap the authors observed
that SPP polarization survives up to nearly 2 ps near the
upper energy edge but decays much faster in the case of the
other edge. The second paper23 relates to experiments dem-
onstrating damped periodic modulation of the transmitted
light field from a metallic grating deposited on a sapphire
substrate. The grating was excited with a 10 fs pulse of car-
rier wavelength �0=800 nm at oblique incidence ���8°�.
The modulation characteristics of the transmitted light after
the exciting pulse died out looks similar to the beat note of
the calculated red curve in Fig. 2�a�.

C. Distance from the grating much smaller than the
wavelength

In this chapter we want to examine the temporal field
evolution at distances as short as 300 and 8 nm from the top
surface of the grating. Figure 7 relates to the behavior of the
magnetic field Hy vs time at �a� z=h+0.300 �m and �b�
z=h+0.008 �m. As in previous figures, Hy is calculated for
the following transverse locations: x=0, x=ag /4, and
x=ag /2. Corresponding plots for the electric field intensities

�Ex�2 at these locations are given below.
The fields displayed in Figs. 7�a� and 7�b� show periodic

amplitude modulations of almost the same modulation period
as the beating oscillations seen far above the grating, com-
pare Fig. 2�a�. However, this time both the electric and mag-
netic fields are dominated by evanescent waves, in contrast

to the case of larger distances discussed before, where the
light field consists mainly of zeroth-order propagating
waves.

The evanescent waves in the near field can move in both
the positive and negative transverse direction �x while their
amplitudes decrease exponentially along the z direction. The
interference of counterpropagating evanescent waves leads to
wave patterns depending on the transverse coordinate, in
contrast to propagating zeroth-order waves being indepen-
dent of x.

The essentially evanescent character of the near field
which manifests itself through its particular dependence on x
can be seen by means of Eq. �5� assuming that the three-
mode model introduced in chapter 2 is still a good approxi-
mation in close proximity to a grating surface. The second
term in the squared brackets of Eq. �5� describes evanescent
waves, if �2
� /c�2−Gx

2�0, which requires q= �1 and
�� f5. In addition, we find a phase difference by 
 between
evanescent fields at x=0 and x=ag /2 which is confirmed in
Fig. 7�c�, displaying an enlarged portion of the black and red
curves of Fig. 7�b�. Contributions of zeroth-order waves to
both evanescent fields are negligible. However, the zeroth-
order waves become visible at locations on the x axis, where
a node of interfering evanescent waves appear, that is, at
x=ag /4 and at x=3ag /4. The green Hy curve of Fig. 7�b�
corresponds to a q=0 mode at x=ag /4 showing a very low
amplitude in comparison to the evanescent waves.

We observe that the black, green, and red curves of Fig.
7�b� differ from each other by the strength of their amplitude
modulation which is usually defined by the modulation index
m, that is, the peak-to-valley excursion of the field amplitude
divided by the peak height. A closer look reveals that m
approaches unity along the green curve, Fig. 7�b�. In con-
trast, the black and red graphs of this figure reveal smaller
values of �i.e., m� �1�, especially at early times. From this
we conclude that a high portion of evanescent waves corre-
sponds to a low strength of amplitude modulation, that is,
low m. On the other hand, the SPP decay progresses with
increasing time. Since this process is connected with the an-
nihilation of evanescent waves and the creation of zeroth-
order propagating waves, we expect that m increases with
time. In fact, both the black and red curves of Fig. 7�b� show
higher values for m at later times. Moreover, Fig. 7�a� refer-
ring to a larger distance from the grating compared with Fig.
7�b� indicates a significantly higher value of m from the be-
ginning of field oscillations. This may be explained by the
lower contributions of evanescent waves to the light field at
a larger distance from the grating.

Next we would like to consider the intensity evolution of
the electric field Ex vs time in close proximity to the grating.

Figure 8 provides a comparison between the intensities �Ex�2
at �a� z=h+0.008 �m and at �b� z=h+0.300 �m. Both
plots of Figs. 8�a� and 8�b� indicate periodic changes in in-
tensity with a reciprocal increase and decrease at x=0 and
x=ag /2. The high peak intensity at x=0 of Fig. 8�a� is ex-
plained with the electromagnetic field enhancement in the
immediate vicinity of the grating surface due to the excita-
tion of SPPs.4,13 In Fig. 8�a� the mean intensity for x=0 is
larger than for x=ag /2 while the reverse is true for Fig. 8�b�.

FIG. 7. �Color online� Magnetic near field Hy vs time, �a� 300
nm, �b� 8 nm above the top surface of the grating, and �c� enlarged
details of field Hy at the transverse locations x=0 and x=ag /2 taken
from �b�. Note that the green curves of �a� and �b�, corresponding to
x=ag /4 have been enlarged by a factor of 5.
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Thus, brightest near-field intensity should be detected in and
around a grating slit while much lower intensity is observed
between adjacent slits at very close proximity to the grating.
However, at 300 nm distance from the grating the situation is
different: the strongest light intensity is now between the
slits. These results are qualitatively consistent with measure-
ments at continuous-wave excitation.24

Figure 9 displays the Poynting flows S̄z,norm and S̄x,norm in
the z and x direction, respectively, at distances of �a�
8 nm and �b� 300 nm above the grating. Let us first consider

the maximum Poynting flow S̄z,norm �black solid line� of Fig.
9�a�, which exhibits periodic changes of the flow direction at
a grating aperture. These oscillations correspond to a regular

exchange of field energy between the SPPs on the top and
bottom surfaces through the grating slits. Figure 9�b� indi-
cates that 300 nm above the grating the major part of S̄z,norm
�dotted red line� is located just between two adjacent slits,
i.e., at x=ag /2. The Poynting flow S̄x �dashed green line� in x
direction relates to the transverse energy transport, which
changes its flow direction periodically, in accordance with

the normal component S̄z of the Poynting flow. For compari-

son, Fig. 9�a� also contains the Poynting flow S̄z,norm as-
signed to the carrier wavelength �0=1.10 �m, which is rep-

resented by the dotted-dashed blue curve. In this case, S̄z,norm
shows no change in the flow direction but points toward the
positive z axis during the entire period of light transmission.
From this, we conclude that the changes in the Poynting flow
direction for �0=0.79 �m are due to the influence of the
SPPs. This corresponds to the occurrence of frequency beat-
ing on the transmitted and reflected electric fields at
�0=0.79 �m which is also attributed to the presence of
SPPs while no beating is observed at �0=1.10 �m, see Figs.
2�a� and 2�b�.

We conclude this chapter with Figs. 10�a� and 10�b�, rep-
resenting the optical spectra �squared moduli of the Fourier
transforms vs. frequency� of the Ex near fields �a� 8 nm and
�b� 300 nm above the grating. First we see from Fig. 10 that
the maxima of both spectra are at the same frequency f2,
however, they significantly differ from each other in their
transverse locations, i.e., x=0 for �a� and x=ag /2 for �b�. For
all the cases shown in Figs. 10�a� and 10�b�, the peak of
�Fx,tr�norm

2 generally appears at f2.
At the flat-metal SPP resonance f4 we observe a minimum

transmission for all transverse positions displayed in Fig. 10.
The same holds true for the spectra at a distance as far as
3.75 �m above the grating, as shown in Fig. 3�a�. A recently
published paper reports on experimental and theoretical re-
sults of the spectral near- and far-field characteristics of a
grating that consists of a thin gold film deposited onto a
sapphire substrate.26 The authors measured a dip at f4 in the

FIG. 8. �Color online� Light intensity �Ex�2 related to the peak
intensity of the incident pulse vs time, �a� 8 nm and �b� 300 nm
above the grating at different transverse locations x. The intensities
at x=ag /4 and x=ag /2 of plot �a� have been increased by a factor of
200 and 10, respectively. The blue curve indicates the intensity of
the incident Gaussian pulse.

FIG. 9. �Color online� Poynting flows S̄z,norm and S̄x,norm related
to the peak value of the incident Poynting flow as functions of time
at �a� 8 nm and �b� 300 nm above the grating. The left vertical axes

relate to S̄z,norm, the right ones to S̄x,norm. Solid black lines and

dotted red ones correspond to S̄z,norm at x=0 and x=ag /2, respec-

tively. Dashed green curves refer to S̄x,norm at x=ag /4.

FIG. 10. �Color online� Ex near-field spectra �a� 8 nm and �b�
300 nm above the grating at three different transverse locations x as
indicated. The spectral densities �Fx,tr�norm

2 are related to the peak
value of the incident spectral density corresponding to a Gaussian
pulse.
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far-field spectrum, which is consistent with the respective
result following from our model. However, they observed a
peak at f4 in the near-field spectrum, in contrast to our find-
ing above. The sapphire substrate is the essential difference
between the grating of Ref. 26 and our theoretical grating
model. The SPP flat-metal resonance frequencies on the top
and bottom interfaces are generally different in a grating de-
posited on a substrate with a refractive index larger than
unity while they agree in case of a free-standing grating sur-
rounded by air, as was assumed in our model. Therefore, the
coupling between the SPPs on the two interfaces will be
much stronger in the latter case.

We conclude that a different strength of SPP mode cou-
pling on the grating interfaces results in different spectral
characteristics of the near and far fields. A more detailed
study on spectral properties, especially those of the near
field, will be reserved for future investigations.

IV. TIME-RESOLVED SPECTRA

A. Wavelet transform

In chapter III light fields in the vicinity of a grating and
optical spectra associated with these fields have been pre-
sented. The time-independent spectra were determined from
the fields by Fourier transformation, where, as usual, the in-
tegration extends over the entire time axis �−	� t�+	�.
However, to gain a more detailed insight into the plasmon
dynamics it would be desirable to understand how the am-
plitude of spectral components in the light field varies with
time.

The wavelet transformation is a well-established method
for analyzing a complex temporal and spectral evolution of
an electromagnetic field. Its name comes from a short oscil-
latory function �wavelet� that controls a windowed Fourier
transform by scaling and translation parameters, see below.
Probably the most widely used wavelet is the Gabor wavelet,
which reads as50

��t� = g�t�ei�t �
1

��2
�1/4e−t2/2�2+i�t, �7�

where 
−	
+	���2dt=1. Equation �7� indicates that the Gabor

wavelet behaves like a damped oscillator characterized by
finite temporal and spectral widths.

The temporal half width �FWHM� of the Gaussian func-
tion ��t� on the right-hand side of Eq. �7� is given by
�th=2�2 ln 2� while the width of the corresponding Fourier

transform �̂��� is ��h=2�2 ln 2 /�. The Function ��t� of
Eq. �7� is called the mother wavelet, the prototype for gen-
erating daughter wavelets, which read as

�u,s�t� =
1
�s

�� t − u

s
� �8�

with a translation parameter u and a scaling factor s.
The wavelet �u,s�t� is centered at delay u and frequency

� /s in the time-frequency plane. The temporal and frequency
variances attributed to this center point are defined via

s2�t
2 = 
−	

+	�t − u�2��u,s�t��2dt

and

��
2 /s2 = 1/2

−	

+	�� − �/s�2��̂u,s����2d� ,

where �t
2 and ��

2 denote the respective variances with respect
to the mother wavelet �u=0, s=1�. For a Gabor wavelet one
obtains �t

2=�2 /2 and ��
2 = �2�2�−1.

With respect to time and frequency the variances are
linked according to Heisenberg’s uncertainty principle. In the
present case of a Gaussian-shaped Gabor wavelet, the uncer-
tainty relation attains its minimum �t

2��
2 =1 /4. The time and

frequency coordinates cannot be specified to an accuracy bet-
ter than s�t and �� /s. Rectangular Heisenberg boxes, cen-
tered at �u ,� /s�, of width s�t in time and �� /s in frequency
illustrate the temporal and spectral spread in the time-
frequency plane, see below. Useful relations connecting the
full half-widths of the Gabor wavelet and its Fourier trans-
form with the standard deviations are �th�3.3�t and
��h�3.3��.

A wavelet transform �WT� of a scalar signal function f�t�
is defined as follows:50

Wf�u,s� = 	
−	

+	

f�t��u,s
� dt , �9�

where �u,s
� is the complex conjugate of the wavelet function

of Eq. �8�. The absolute value of the wavelet transform
is called the WT amplitude A�u ,s� given by
A�u ,s�= �Wf�u ,s��. In the following we consider characteris-
tic features of two-dimensional functions A�u ,s� related to
the electric light fields above and below the grating.

To obtain A�u ,s� the temporal behavior of Ex�t� numeri-
cally calculated in chapter III.B is inserted on the right-hand
side of Eq. �9�, that is, f�t��Ex�t�. We would like to mention
that the squared WT amplitude A�s ,u�2 corresponds to
�F����2 the squared modulus of the Fourier transform defined
above. The next chapter shows that time and frequency res-
olution in the u /s plane is mainly determined by the param-
eter �. A small value of � corresponds to a large half width
��h, possibly resulting in a fairly coarse spectral resolution
such that frequency intervals of interest are not individually
distinguishable. On the other hand, small � also means high
temporal resolution, since �th is small. In fact, the value of �
should be adapted appropriately to get as much comprehen-
sive insight as possible into the spectral evolution with time.

B. Wavelet transforms of light fields in the vicinity
of the grating

In what follows wavelet transforms of light field compo-
nents are presented starting with the WT transform of a beat
note as an introductory example �chapter IV.B.1.�. In a sec-
ond step, WT transforms of light fields above and below a
grating illuminated with a short pulse are calculated and
compared with relevant Fourier spectra �IV.B.2.�.

1. Wavelet transform of a beat signal

The light field around the grating fades away over several
periods of damped oscillations after the incident pulse dies
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out, see Fig. 2. Before presenting wavelet transforms of a
calculated light field, we want to give an idea of what a
wavelet transform of simple beat oscillations looks like, see
also Ref. 51. To this end, we apply a wavelet transformation
to two interfering waves b�t�=cos�2
�1t�+cos�2
�2t� with
�1=0.38 fs−1 and �2=0.40 fs−1. This interference results in
a beat frequency �beat=�2−�1=0.02 fs−1. For a comparison
with the beating characteristics of Figs. 2�a� and 2�b�, the
numerical values of �1 and �2 were chosen such as to nearly
agree with the boundary frequencies of the gap in the Fourier
spectrum of Fig. 3�a�.

Figure 11�a� shows the beat signal b�t� versus time while
the plots of Figs. 11�b�–11�d� indicate the WT amplitude
A�u ,s�= �Wf�u ,s�� following from Eq. �9� with f�t��b�t� for
various values of �, namely, �b� �=15 fs, �c� �=23 fs, and
�d� �=30 fs. The angular frequency � of the Gabor wavelet
is chosen as �=2
�av, where �av= ��1+�2� /2=0.39 / fs.
Moreover, �av is assumed to correspond to s=1. The latter
definition leads to the relation s=�av /�, which means that �1
and �2 are associated with s=1.026 and s=0.975, respec-
tively. On the right-hand sides of Figs. 11�b�–11�d�, fre-
quency axes are additionally introduced to facilitate transfor-
mation from scaling factors into frequency and vice versa.
Hatched areas of Figs. 11�b�–11�d� indicate Heisenberg
boxes belonging to s=1. Red-colored areas correspond to
high WT amplitudes, blue ones to low amplitudes. We ob-

serve a distinct periodic variation of the WT amplitude with
delay time for �=15 fs, Fig. 11�b�, which apparently reflects
the intensity variation with time of the beat pattern. The in-
crease in frequency resolution from Figs. 11�b�–11�d� can be
explained with a decrease in the spectral halfwidth of the
wavelet, ��h relative to �beat=�2−�1. In detail one obtains
��h�1.2�beat, ��h�0.8�beat, and ��h�0.6�beat for the
plots �b�–�d�, respectively. Thus, the frequency resolutions
related to �c� and �d� are sufficient to discern separated fre-
quency intervals that contain �1 or �2.

2. Wavelet transform of calculated fields above and below the
grating

Returning to the original problem, we proceed with the
wavelet transform of the field Ex�t� in the intermediate near-
to-far-field region of a grating illuminated by a 10 fs pulse of
carrier frequency �0=0.38 / fs, see chapter III.B. The trans-
mitted and reflected electric fields appearing in response to
the exciting pulse are shown in Figs. 2�a� and 2�b� �red
curves�. Wavelet transform amplitudes A�u ,s� of these fields
are shown in Figs. 12 �transmitted field� and 13 �reflected
field�. The vertical axes correspond to scaling factor �left�
and frequency �right�, linked together as explained in the
previous chapter; the horizontal axis relates to the delay time
u.

The two wavelet diagrams, Figs. 12 and 13, relate to
�=30 fs, allowing for a satisfying frequency resolution
��h�1.2�10−2 fs−1 in the time frequency plane, Fig. 11�d�.
This value of � appears also suitable for obtaining insight
into the spectral evolution of fields related to more complex
wavelet transforms than those in Figs. 12 and 13. We expect,
however, only a poor resolution in time according to a half-
width of �th�70 fs which is much longer than the incident
pulse width but shorter compared to the effective duration of

FIG. 11. �Color online� Wavelet transform of a beat signal b�t�.
�a� Electric field b�t� resulting from two interfering waves of fre-
quencies �1 and �2. Subsequent plots show the WT amplitude of
b�t� for �b� �=15 fs, �c� �=23 fs, and �d� �=30 fs. The ordinates
in �b�–�d� relate to scaling factor s �left� and frequency � �right�.
The abscissa is the time delay u between wavelet and b�t�. Hatched
rectangles indicate Heisenberg boxes.

FIG. 12. �Color online� Contour plot of the WT amplitude
A�u ,s� for the Ex field above the grating, displayed by the red curve
in the bottom part of Fig. 2�a�. The two-dimensional plot refers to
�=30 fs. Global maxima of A�u ,s� are marked by crosses. White
solid lines in the u /s plane join local maxima of A�u ,s� while
dashed ones connect local minima. Curves A1, A2, A3, and A5 in
the inset show WT amplitudes vs u taken along paths C1, C2, C3,
and C5, respectively, in the main plot.
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field response. It is easily seen that both plots of Figs. 12 and
13 can be roughly divided into two sections, namely, �i� a
main section earlier than u�120 fs representing high WT
amplitudes and �ii� a subsequent section to the right of
u�120 fs which shows a much weaker WT amplitude. The
low amplitude is evidently related to light emission due to
the decay of SPPs, after the disappearance of the initial
pulse. We would like to note that the extended time in the
main section is due to the previously mentioned large tem-
poral halfwidth of the Gabor wavelet. We further observe a
distinct discrepancy in the width of the spectral ranges of the
two sections. While the spectral range of the main section is
comparable to that of the exciting field, a much narrower
spectral width is found in the second section.

The best access to the above WT transforms A�u ,s� of
Figs. 12 and 13 is probably through a comparison with rel-
evant FT spectra. Let us first focus on Fig. 12 and its FT
counterpart, the red curve of Fig. 3�a�. The latter FT spec-
trum exhibits peaks at frequencies f2, f5 and f7 but dips at f4
and at f6. These particular frequencies are indicated on the
frequency axis of Fig. 12. Curves C1 and C3 represent posi-
tions of local maxima in the time-frequency plane while C2
indicates the bottom of a valley between C1 and C3. At large
delay times, the frequency coordinates of C1, C2, and C3 are
close to f2, f4, and f5, respectively. Thus, the valley of low
WT amplitude is associated with the frequency gap of the FT
spectrum whereas the curves C1 and C3 correspond to the
peaks limiting the frequency gap at its low- and high-
frequency sides, respectively, see Fig. 3�a�.

Curves C4 and C5 represent traces on the high-frequency
wing of the pulse spectrum with frequencies around f6 and
f7. These curves correlate with the dip at f6 and the peak at f7
in the FT power spectrum, respectively. Since they are lo-
cated outside the SPP frequency gap, the curves C4 and C5
only exist in the presence of the exciting pulse.

The inset of Fig. 12 shows the WT amplitudes along
curves C1, C2, C3, and C5 in the main plot. Graph A1 shows

a distinct asymmetric behavior resulting from a steep slope
of the leading edge and a slow decrease in the trailing edge,
which can be explained by a fast decline of the exciting pulse
and a comparatively slow decrease of surface plasmon den-
sity after the input pulse disappeared. A less pronounced
shape is found for curve A3. We further observe that curve
A2, the WT amplitude along C2, is damped and periodically
modulated which is reminiscent of Fig. 11�d�, where similar
patterns arise at �=0.39 / fs even though damping was not
included.

Figure 13 depicts the WT amplitude of the Ex field re-
flected from the grating, see red curve of Fig. 2�b�. Again, we
want to focus on the relationships between characteristic fea-
tures of WT and FT transforms. Particular frequencies in the
FT spectra of Figs. 3�a� and 3�b� are also indicated on the
frequency axis of Fig. 13. Let us first look at curves D1 and
D3, connecting local maxima in the time-frequency plane.
The inset provides evidence that points Q1 and Q3 marked
on D1 and D3 indicate positions of global maxima of the WT
amplitude. The frequencies attached to Q1 and Q3 agree
quite well with f1 and f3, respectively, i.e., the frequencies of
the two adjacent peaks in Fig. 3�b�. Line D2 marks the bot-
tom of a valley between Q1 and Q3, which corresponds to
the dip at frequency f2 of Fig. 3�b�.

After delay times related to peaks Q1 and Q3, curves D1
and D3 move away from each other, but eventually change
again their direction in the u /� plane and move toward each
other. Ultimately, curves D1 and D2 end at u�137 fs
whereas D3 continues with line C1 extending to the right
edge of the plot. A similar pattern can be observed for a set
of curves above frequency f4 in Fig. 13. In detail, E1 is
continued by line C3 which, like C1, extends to the right
edge of the plot. On the other hand, curves E2 and E3 also
end at u�137 fs, just as D1 and D2 do.

It remains to discuss curve C2, which is on the bottom of
the valley between lines C1 and C3. Thus, the behavior of
curves C1, C2, and C3 at large delay times conforms with
that of Fig. 12. This indicates a symmetric SPP decay on the
top and bottom interface of the grating long after the exciting
pulse has disappeared. We conclude with Fig. 14, which
summarizes important features of the wavelet transforms for
the grating fields shown above. Figures 14�a� and 14�b� rep-
resent cross sections of the WT contour maps of the respec-
tive Figs. 12 and 13, parallel to the frequency axis. Each
cross section displays the WT amplitude vs. frequency at a
particular delay time u. We restrict ourselves to four values
of u, namely, u=30, 90, 130, and 210 fs.

First, we note a prominent dip in the WT amplitude close
to f4� fSP�0.39 fs−1, i.e., the frequency of the first-order
SPP resonance for a smooth interface. This behavior is vis-
ible in all curves of Fig. 14�a�, that is, during the total delay-
time interval considered. We note further that the wavelet
amplitude changes noticeably with u within a narrow fre-
quency interval around f4. Starting from small values of u,
we first observe a large difference in the heights of the two
nearest maxima of the WT amplitude on either side of f4 in
the case of u=30 fs and u=90 fs. The height difference of
the two maxima levels out, however, again with increasing u
as can be seen, for example, in the WT amplitude for u
=210 fs. The transient behavior of the peak heights is also

FIG. 13. �Color online� Same as Fig. 12 but for the Ex field
below the grating shown by the red curve in the bottom part of Fig.
2�b�. Note the logarithmic scale for the WT amplitude A�u ,s� in the
main plot. White solid lines in the u /s plane join local maxima of
A�u ,s� while dashed ones connect local minima. The inset repro-
duces the main plot but employs a linear scale in order to highlight
details of the contour relief in the high-amplitude region.
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evident from the graphs A1 and A3 in the inset of Fig. 12.
Moreover, Fig. 14�a� indicates a remarkable variation in the
dip amplitude with time. While the minimum values of the
WT amplitude close to f4 are very low for u=30 and 210 fs,
significantly larger minimum values are obtained at u
=90 fs and u=130 fs. The temporal change of the dip mini-
mum is described in detail through curve A2 in the inset of
Fig. 12.

Next we focus on the situation below the grating, that is
on Fig. 14�b�. In contrast to Fig. 14�a�, we recognize that the
WT amplitude of Fig. 14�b� exhibits a dip at f4 only during
the final stage of light emission, i.e., at large u, well after the
exciting pulse disappeared. This is illustrated, for example,
by the curves for u=130 fs and u=210 fs. In conclusion,
Fig. 14 indicates that a dip in the wavelet amplitude occurs at
frequency f4, both above and below the grating. The dip
below the grating becomes discernible, however, only long
after the exciting pulse and, in turn, the field reflected of the
bottom surface disappears. This means that the spectral char-
acteristics of SPP decay on the top and bottom interfaces
reveal a very similar behavior for large times.

V. SUMMARY

In this work we investigated the temporal and spectral
properties of the light field around a free-standing transmis-
sion gold grating illuminated with a TM-polarized laser pulse
of 10 fs duration at normal incidence. The carrier frequency

of the pulse was chosen such as to excite SPP modes on the
top and bottom air/metal interfaces. In particular, we studied
the temporal behavior of the field, which is closely con-
nected to the SPP decay after the impinging pulse disap-
peared. Our numerical simulations reveal that the near and
far fields consist mainly of evanescent or propagating waves,
respectively.

In close proximity to the grating, the evanescent waves
are propagating parallel to the grating surfaces and interfere
with each other, which results in a periodic transverse ampli-
tude modulation. The near-field amplitude modulation exhib-
its increasing strength with time due to a drop of the evanes-
cent wave density associated with the SPP decay. In the far-
field region, the propagating waves of zeroth diffraction
order �q=0� are traveling perpendicularly to the grating sur-
faces and give rise to a homogeneous transverse profile.
These far field waves also show temporal amplitude modu-
lation with a period corresponding to the reciprocal width of
a frequency gap in the optical transmission spectrum. A
strong coupling between SPP modes on the top and bottom
interfaces leads to fixed phase relations between the beat
notes of the transmitted and reflected light fields. This cou-
pling is confirmed by the periodic change of the near-field
Poynting flow with direction perpendicular to the interfaces.

Finally, we studied the time evolution of the spectra for
the transmitted and reflected far-fields with a Gabor wavelet
transform. A comparison between the main features of the
WT amplitudes and those of the relevant Fourier transform
spectra indicates coinciding positions of the peaks and dips
at the frequency axes for the transmitted fields. In particular,
minimum transmission is observed at the flat-metal SPP reso-
nance. In contrast, the WT amplitude of the reflected light
shows a peak at small delay times and a dip at large delay
times. On both interfaces the same spectral features of the
SPP decay can be observed long after the incident pulse van-
ished.

The excitation of SPPs with continuous-wave and pulsed
lasers has found a large variety of applications in nanooptics,
for example, in enhanced light transmission through nano-
structured metallic films,11 integrated photonic devices,52 and
optical nanoantennas.53 The applications mentioned can ben-
efit from a temporal resolution on the femtosecond scale,
when ultrashort laser pulses are used for excitation of the
SPPs. However, this requires a detailed understanding of the
underlying SPP decay. In this paper we presented different
aspects to the dynamics of the SPP decay after excitation
with ultrashort laser pulses. The wide availability of laser
sources in the considered wavelength range �near infrared�
allows for a direct experimental testing of the above findings.
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FIG. 14. �Color online� WT amplitudes of the electric field Ex at
particular delay times u vs frequency. �a� 3.75 �m above and �b�
3.75 �m below the grating. The curves are taken from Figs. 12 and
13, respectively, and relate to various values of u, namely, black
solid lines correspond to u=30 fs, blue dotted dashed ones to u
=90 fs, green dashed curves belong to u=130 fs, and red dotted
lines to u=210 fs. The WT amplitudes of �a� and �b� are normal-
ized to their respective peak values. Note the logarithmic scale for
the ordinate of �b�.
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